Energy in Translation

Over the last few years researchers have refined what they know about energy usage in translation. Everyone is relearning this information. Previous handouts, problem sets, exams, and recitation problems may have answers based on outdated knowledge.

This handout is intended to summarize and act as a final guide in this matter.

Two things we need to understand going in:

• ATP Equivalents via bond breaking

An "ATP equivalent" is the amount of energy released in breaking a phosphodiester bond in an ATP molecule. For ever bond we break, we get an "ATP equivalent." So for ATP \rightarrow ADP, we broke one phosphodiester bond and have 1 equivalent. For ATP \rightarrow AMP, we break one bond initially, but the PP_i that comes off is hydrolyzed to 2P_i, in effect breaking a second phosophodiester bond, resulting in a net total of 2 ATP equivalents.

 \mathbf{O} GTP = ATP

In the second half of the class you will learn how this works. For now, just know that for every $GTP \rightarrow GDP$ conversion, we then use one $ATP \rightarrow ADP$ to recharge the GDP \rightarrow GTP; essentially, for every GTP used, you've used one ATP.

Step in Translation	Used	ATP Eq.	Multiplication Factor	Step Total
tRNA Charging				
$ATP \rightarrow AMP + PP_i$	1 ATP	2	n amino acids	2n
$PP_i + H_2O \rightarrow 2P_i$				

For aminoacylation, the tRNA utilizes an ATP which has its bonds broken twice.

Initiation

IF_2 -GTP \rightarrow IF_2 + GDP	1 GTP	1	1 time only	1
The IF ₂ -GTP complex is utilized	in the bir	nding of	the 30S unit top th	e mRNA

Elongation

Termination

The release factor RF-3	1 GTP	1	1 time only	1
As was mentioned in lecture 2/20	6, RF-3 is	a EF	-Tu homologue and uses	GTP

Energy in Translation

Totals: 2n + 1 + (n-1) + (n-1) + 1 = 4nExample: for a 100 a.a. polypeptide.

Step in Translation	Used	ATP Eq.	Multiplication Factor	Step Total
$tRNA \ Charging$ $ATP \rightarrow AMP + PP_i$ $PP_i + H_2O \rightarrow 2P_i$	1 ATP	2	100 amino acids	200
Initiation IF_2 -GTP \rightarrow IF_2 + GDP	1 GTP	1	1 time only	1
Elongation				
Delivery of AA by EF-T _u	1 GTP	1	99 amino acids	99
Displacement of A site to P site	1 GTP	1	99 amino acids	99
Termination				
The release factor RF-3	1 GTP	1	1 time only	1
<i>Totals:</i> 200 + 1 + 99 + 99 + 1= 400				

Proof: 4n = 4 * 100 = 400