Enzyme Kinetics and Plots

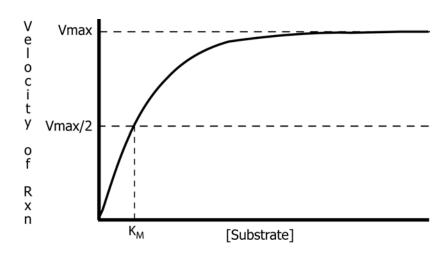
$$\mathbf{E} + \mathbf{S} \stackrel{k_1}{\rightleftharpoons} \mathbf{ES} \stackrel{k_2}{\rightleftharpoons} \mathbf{E} + \mathbf{P}$$

$$k_{.1} \qquad k_{.2}$$

Filled Sites and Turnover Number

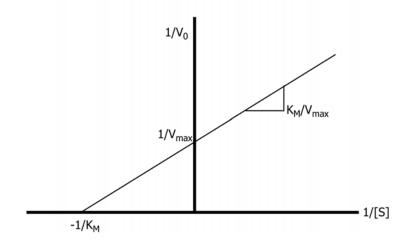
Define fraction of filled sites on enzyme as $f = [S]/([S] + K_M)$ (Just accept this!)

Define $k_{cat} \equiv k_2 = V_{max}/[E]_T =$ "turnover number" also... $k_{cat} = \#$ of substrate molecules that go to product / # of enzyme molecules $1/k_{cat} = time$ for one reaction to occur


Measure of Catalytic Efficiency = k_{cat}/K_{M}

Limit of Catalytic Efficiency \equiv fastest the reaction can possibly happen $= k_1$ Two assumptions:

- 1) $k_{cat} >> k_{-1}$
- 2) reaction is limited by diffusion only; therefore, $k_{max} \approx 10^8 10^9$ mol/sec


Michaelis-Menten Plot

$$V_0 = \frac{V_{max}[S]}{K_M + [S]}$$

Lineweaver Burke Plot

$$\frac{1}{V_0} = \frac{K_M}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

